Graph Voronoi Regions for Interfacing Planar Graphs
نویسندگان
چکیده
Commanding motion is supported by a touch screen interface. Human input demonstrating trajectories by a sequence of points may be incomplete, distorted etc. Theses e ects are compensated by a transformation of vertex sequences of a regular grid into paths of a planar graph which codes feasible motions. The transformation is based on alteration operations including re-routings and on a so-called graph Voronoi regions which partition the plane according to proximity to vertices and edges.
منابع مشابه
Planar Lombardi Drawings for Subcubic Graphs
We prove that every planar graph with maximum degree three has a planar drawing in which the edges are drawn as circular arcs that meet at equal angles around every vertex. Our construction is based on the Koebe–Thurston–Andreev circle packing theorem, and uses a novel type of Voronoi diagram for circle packings that is invariant under Möbius transformations, defined using three-dimensional hyp...
متن کاملVoronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic Õ(n5/3) Time
We present an explicit and efficient construction of additively weighted Voronoi diagrams on planar graphs. Let G be a planar graph with n vertices and b sites that lie on a constant number of faces. We show how to preprocess G in Õ(nb) time so that one can compute any additively weighted Voronoi diagram for these sites in Õ(b) time. We use this construction to compute the diameter of a directe...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملVoronoi diagrams on planar graphs, and computing the diameter in deterministic $\tilde{O}(n^{5/3})$ time
We present an explicit and efficient construction of additively weighted Voronoi diagrams on planar graphs. Let G be a planar graph with n vertices and b sites that lie on a constant number of faces. We show how to preprocess G in Õ(nb) time so that one can compute any additively weighted Voronoi diagram for these sites in Õ(b) time. We use this construction to compute the diameter of a directe...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کامل